블로그 - JLCPCB
PCB 설계PCB 제조PCB 지식PCB 조립
스위칭 레귤레이터를 위한 효과적인 PCB 레이아웃 설계 방법
스위칭 레귤레이터는 현대 전자기기의 핵심 부품으로, 전력을 효율적으로 변환하여 에너지 손실을 최소화하면서 기기의 원활한 작동을 가능하게 합니다. 하지만 "노이즈"라는 고질적인 문제가 있습니다. 이는 전자기 간섭(EMI) 등의 형태로 나타나며, 미세한 소음을 유발하거나 오실로스코프에서 스파이크를 감지하기 어렵게 만듭니다. 이러한 문제를 경험해본 적이 있다면, 그 복잡함을 잘 알고 있을 것입니다. 본 문서에서는 스위칭 레귤레이터의 PCB 레이아웃을 효과적으로 설계하는 방법을 다루며, 노이즈를 억제하여 회로가 안정적으로 작동할 수 있도록 돕고자 합니다. 이를 위해 다음과 같은 주요 가이드라인을 제공합니다: 전원 공급장치 레이아웃에서 발생할 수 있는 잠재적인 문제. 전원 공급장치 레이아웃을 위한 PCB 매개변수 설정. 최적의 레이아웃을 위한 구성 요소 배치 및 배선 팁. 스위칭 레귤레이터란 무엇인가? 스위칭 레귤레이터는 고주파 스위치(트랜지스터)와 수동 부품(인덕터, 커패시터)을 사용하여 전압을 승압......
Mar 26, 2025
스위칭 레귤레이터를 위한 효과적인 PCB 레이아웃 설계 방법
스위칭 레귤레이터는 현대 전자기기의 핵심 부품으로, 전력을 효율적으로 변환하여 에너지 손실을 최소화하면서 기기의 원활한 작동을 가능하게 합니다. 하지만 "노이즈"라는 고질적인 문제가 있습니다. 이는 전자기 간섭(EMI) 등의 형태로 나타나며, 미세한 소음을 유발하거나 오실로스코프에서 스파이크를 감지하기 어렵게 만듭니다. 이러한 문제를 경험해본 적이 있다면, 그 복잡함을 잘 알고 있을 것입니다. 본 문서에서는 스위칭 레귤레이터의 PCB 레이아웃을 효과적으로 설계하는 방법을 다루며, 노이즈를 억제하여 회로가 안정적으로 작동할 수 있도록 돕고자 합니다. 이를 위해 다음과 같은 주요 가이드라인을 제공합니다: 전원 공급장치 레이아웃에서 발생할 수 있는 잠재적인 문제. 전원 공급장치 레이아웃을 위한 PCB 매개변수 설정. 최적의 레이아웃을 위한 구성 요소 배치 및 배선 팁. 스위칭 레귤레이터란 무엇인가? 스위칭 레귤레이터는 고주파 스위치(트랜지스터)와 수동 부품(인덕터, 커패시터)을 사용하여 전압을 승압......
Mar 26, 2025
고주파 PCB 설계에서 EMI/EMC 및 신호 무결성 문제 해결 방법
고주파 PCB 설계는 매우 까다로운 작업으로, 전자기 간섭(EMI)과 신호 무결성(SI) 문제가 주요 도전 과제 중 하나입니다. 이러한 문제는 회로 성능을 저하시킬수 있으며, 신뢰성 문제를 야기하고 규제 적합성 테스트에서 실패를 초래할 수 있습니다. 이를 해결하기 위해서는 설계 과정 전반에 걸쳐 철저한 계획과 실행이 필수적입니다. 다음은 이러한 문제를 극복하기 위한 몇 가지 전략입니다. 복잡한 신호 방향을 갖는 네트워크에서 단방향, 양방향 및 다양한 신호 수준에 따라 토폴로지가 신호 품질에 미치는 영향은 각기 다릅니다. 신호 품질에 최적화된 토폴로지를 결정하는 것은 어려운 과제이며, 이를 위해 설계 초기 단계에서 시뮬레이션을 수행해야 합니다. 적합한 토폴로지를 선택하려면 엔지니어가 회로 설계 원리, 신호 유형, 배선의 복잡성 등에 대한 깊은 이해가 필요합니다. 신호 무결성을 위한 PCB 레이아웃 최적화 팁 PCB 레이아웃은 신호 무결성을 보장하는 데 매우 중요한 역할을 합니다. 고주파 설계를 ......
Mar 19, 2025
IPC 규격을 활용한 PCB 레이아웃 최적화 방법
PCB 설계는 단순히 기판 위에 부품을 연결하는 작업에 그치지 않고, 산업 표준을 준수하는 견고하고 신뢰성 높은 제조 가능한 설계를 만드는 과정입니다. 여기서 IPC 규격이 중요한 역할을 합니다. IPC 규격은 PCB 설계 및 제조 분야에서 가장 널리 인정받는 중요한 표준 중 하나로, 전자 설계, 제조, 심지어 국방 분야에서도 설계자가 보드를 설계하고 다양한 산업에서 생산을 준비하는 데 영향을 미칩니다. 이러한 표준은 제품의 성능과 신뢰성을 보장하기 위해 마련되었으며, 여러 산업에서 폭넓게 채택되고 있습니다. IPC 규격의 주요 목적은 전자 제품이 신뢰성과 안전성을 갖추고 제조 가능하도록 보장하는 것입니다. 귀하가 속한 산업 분야나 시장 세그먼트와 관계없이, IPC는 제품의 중요한 요구 사항을 정의하는 표준을 제공합니다. 이 문서에서는 다음과 같은 내용을 다룹니다: PCB 레이아웃 설계에서 IPC 규격을 준수하는 것이 왜 중요한가? PCB 레이아웃 설계와 관련된 주요 IPC 규격은 무엇인가? ......
Mar 16, 2025
고주파 PCB 설계에서 라우팅 및 적층 문제 해결
고주파 PCB 설계는 특히 라우팅 및 적층 구성에서 독특한 도전 과제를 제공합니다. 신호 무결성과 최적의 성능을 보장하기 위해서는 체계적인 계획과 정확한 실행이 필수적입니다. 아래에서는 고주파 PCB 설계에서 흔히 발생하는 문제와 이를 해결하기 위한 전략을 살펴봅니다. 신호 무결성은 주로 임피던스 매칭과 밀접한 관련이 있습니다. 임피던스 매칭에 영향을 미치는 주요 요인으로는 신호 소스 아키텍처, 출력 임피던스, 트레이스 특성 임피던스, 부하 특성, 그리고 회로 토폴로지가 포함됩니다. 이러한 문제를 해결하기 위해 종단(Termination) 기술을 활용하거나 트레이스 토폴로지를 조정하는 방법이 사용됩니다. 고주파 PCB의 라우팅 과제 고주파 회로는 전자기 간섭(EMI)과 크로스토크에 매우 민감하기 때문에 정밀한 라우팅 설계가 필수적입니다. 부적절한 라우팅은 신호 열화, 노이즈 증가, 그리고 기능적 문제를 초래할 수 있습니다. 이를 해결하기 위한 주요 방법은 다음과 같습니다: 임피던스 제어: PC......
Mar 10, 2025
효과적인 HDI PCB 설계를 위한 적층 전략
무어의 법칙이 유효하든 그렇지 않든, 더 작은 폼 팩터에 더 강력한 처리 능력을 집어넣으려는 경제적 동기는 앞으로도 사라지지 않을 것입니다. 이러한 흐름 속에서 HDI 적층 기술은 다층 PCB 설계의 최첨단 기술로, 앞으로도 작고 복잡한 보드를 설계할수 있는 가능성을 열어줍니다. PCB(인쇄회로기판) 설계에서 적층(stack-up)은 기판의 성능, 제조 가능성, 신뢰성에 영향을 미치는 핵심 요소입니다. 특히 고밀도 상호연결(HDI) PCB에서는 컴팩트한 디자인과 복잡한 레이어 구조로 인해 적층 전략의 중요성이 더욱 강조됩니다. HDI PCB의 제조는 1980년대 후반에 시작되었습니다. 최초의 HDI 생산은 1984년에 PCB의 순차적 빌드업으로 시작되었으며, 그 이후 설계자와 제조업체는 더 작은 공간에 더 많은 부품을 효율적으로 배치하기 위한 방법을 꾸준히 개발해 왔습니다. HDI 보드는 IPC-2315 및 IPC-2226 표준에 따라 설계 및 제조됩니다. 이 문서에서는 PCB 적층의 정의, ......
Mar 7, 2025
고속 PCB 설계에서 비아(Via)의 영향
고속 신호에서는 임피던스 매칭이 필수적입니다. 이는 신호 경로의 임피던스가 연속적이며 수신기 임피던스와 일치해야 한다는 것을 의미합니다. 임피던스가 일치하지 않으면 신호 반사가 발생하여 신호가 왜곡될 수 있습니다. 기본적으로 PCB 트랙의 특성 임피던스는 트랙 폭, 트랙 구리 두께, 기준 GND 평면으로부터의 거리, 그리고 유전체 상수에 의해 결정됩니다. 이러한 원칙은 고속 설계에서 매우 중요하지만, 비아와 관련하여 여러 가지 문제가 발생할 수 있습니다. 비아는 신호 경로가 90도 방향으로 바뀌는 지점을 의미합니다. 비아의 구조적 특성은 PCB 트랙과 다르며, 기본적으로 기준 평면(reference plane)을 가지지 않습니다. 이러한 구조와 기준 평면의 부재로 인해 비아의 임피던스는 PCB 트랙의 임피던스와 일치하지 않을 가능성이 높습니다. 이는 신호 반사를 유발해 신호 무결성을 저하시킬 수 있습니다. PCB 성능에 영향을 미치는 다양한 요소 중 비아는 고속 및 고주파 회로에서 신호 무결성......
Mar 3, 2025
Castellated PCB : 소개 및 설계 요구 사항
전자 기술의 급속한 발전으로 전자 제품은 소형화, 휴대성, 다기능성, 고집적화, 고신뢰성으로 나아가고 있습니다. 이에 따라 인쇄 회로 기판(Printed Circuit Board, PCB)은 기성 모듈을 재사용하도록 설계되는 경우가 많습니다. 예를 들어, IoT 블루투스 모듈이나 NB-IoT 모듈 같은 필수 통신 모듈은 칩처럼 PCB에 납땜(Soldering)될 수 있습니다. 이러한 캐리어 보드는 소형 크기와 일부 가장자리에 Castellated Holes이 있어, 이를 통해 메인 PCB에 쉽게 납땜 가능합니다. 이 PCB 조립 과정은 업계에서 Castellated Hole 공정으로 불립니다. Castellated Holes 설명 다음은 PCB(인쇄 회로 기판)의 캐슬레이트 가장자리 확대한 사진입니다. 이런 유형의 PCB는 가장자리를 따라 금속 도금이 된 반구멍 (캐슬레이티드 홀)이 배치되어 있습니다. 이러한 구멍들은 비교적 작으며, 주로 캐리어 보드에서 사용됩니다. 해당 보드들은 메인 PCB......
Sept 27, 2024
솔더 마스크의 기본 설계
일반적인 양면 PCB(인쇄 회로 기판)는 기판 표면부터 동박층, 솔더 마스크층, 실크스크린층의 세 층으로 구성됩니다. 이 층들은 드릴링 층에 있는 도금 관통 홀(PTH)을 통해 상단과 하단층 간의 전기적 연결을 제공합니다. 솔더 마스크의 목적 1. 수분과 다양한 화학물질 및 전해질의 침투를 방지하여 구리 도체의 산화와 부식을 막고, 전기적 성능 저하를 방지합니다. 2. 외부의 기계적 스크래치로부터 보호하여 구리 도체 간의 절연을 유지하고, 단락 회로를 예방합니다. 3. 부품 납땜 시 불필요한 납땜 연결을 막아 단락 회로를 방지합니다. 4. 납땜이 필요 없는 영역에서 패드 표면 마감 처리 (예: ENIG, HASL) 의 소모를 줄입니다. 5. 보드에 다양한 색상을 제공하여 외관을 향상시킵니다. 솔더 마스크 디자인 솔더 마스크는 모든 솔더링을 막는 것이 아닙니다. 초보 엔지니어들은 솔더 마스크 레이어에 그려진 패턴이 특정 영역을 솔더링할 수 없게 만든다고 잘못 이해할 수 있습니다. 이는 잘못된 인......
Sept 17, 2024
PCB 기초 2 : 설계 기이드라인
PCB 기초 시리즈의 두 번째 글에 오신 것을 환영합니다. 이번 글에서는 최적의 PCB 설계 성능과 기능을 달성하기 위해 꼭 알아야 할 필수적인 설계 지침에 대해 다룹니다. 전자 기기에 관심이 있는 애호가, 취미로 전자 기기를 다루는 사람, 엔지니어, 학생, 또는 전문가 모두에게, 이 지침을 이해하는 것은 고품질 PCB 설계를 만드는 데 큰 도움이 될 것입니다. 그럼 JLCPCB와 함께 세부 사항을 살펴보겠습니다! 부품 배치 효과적인 부품 배치는 최적의 PCB 성능을 위해 매우 중요합니다. 이는 신호 무결성, 열 관리 및 제조 가능성에 영향을 줍니다. * 부품 배치를 논의할 때는 열원에 대한 근접성, 신호 경로, 연결기와의 거리를 고려하는 것이 중요합니다. * 아날로그와 디지털 부품을 분리하여 상호 간섭을 최소화하는 것의 중요성도 강조해야 합니다. 또한, 고속 부품은 신호 손실을 줄이기 위해 신호원에 가까이 배치하는 것이 중요합니다. * 고속 부품과 신호원 간의 트레이스 길이를 짧게 유지하여 ......
Sept 23, 2024
PCB 기초 1: 인쇄 회로 기판(PCB) 소개
"PCB 기초" 시리즈의 첫 번째 기사에 오신 것을 환영합니다. 이 시리즈에서는 인쇄 회로 기판(PCB)의 기본적인 측면과 현대 전자기기 세계에서의 중요한 역할을 탐구하는 여정을 시작하게 됩니다. 이 기사에서는 PCB의 중요성에 대해 깊이 알아보고, PCB를 구성하는 복잡한 부품과 구조를 분석하며, 설계 과정이 PCB 제조에 미치는 깊은 영향을 소개할 것입니다. PCB 기술의 핵심을 파악하고, 이 기술이 우리가 일상적으로 사용하는 기기들을 어떻게 작동하게 하는지 알아봅시다. 현대 전자 기기에서 PCB의 중요성 현대 전자 기기의 빠른 발전 속에서 PCB는 제품이 우리 생활에 필수적인 부분이 되도록 하는 핵심 요소입니다. 그 중요성을 알아봅시다. 복잡한 기능 구현 : PCB는 전자 기기의 기초 역할을 하여 다양한 부품을 통합하고 우리가 요구하는 복잡한 기능을 가능하게 합니다. 성능 및 신뢰성 향상 : 최적의 레이아웃 설계와 회로 최적화를 통해 PCB는 효율적인 신호 흐름을 보장하고 간섭을 최소화하......
Sept 23, 2024
초보자가 흔히 하는 PCB 설계 실수 5가지 (그리고 이를 피하는 방법)
인쇄 회로 기판(Printed Circuit Boards, PCBs)은 현대 전자 제품의 핵심 구성 요소입니다. 스마트폰, 노트북, 자동차, 가전제품 등 거의 모든 전자 장치에 사용됩니다. PCB는 전자 부품을 연결하는 효과적인 방법으로, 신호와 전력을 소형화된 구조로 안정적으로 전달합니다. 그러나 PCB 설계는 특히 초보자에게 결코 쉬운 작업이 아닙니다. 이 글에서는 초보자들이 주로 범하는 PCB 설계 실수 5가지와 그 해결 방법에 대해 알아보겠습니다. 이러한 실수들은 신호 간섭, 열 문제, 전원 공급 문제, 심지어 부품 손상과 같은 문제를 일으킬 수 있습니다. 이러한 실수를 피함으로써, 여러분의 PCB 설계가 기능적이고 신뢰할 수 있도록 보장할 수 있습니다. 실수 #1: 접지면(Ground Plane)을 사용하지 않음 그라운드 플레인은 PCB(인쇄 회로 기판)에 넓게 펼쳐진 구리 영역으로, 접지와 연결되어 있습니다. 이는 전자기 간섭(EMI)이 PCB의 신호에 영향을 미치는 것을 방지하는 ......
Sept 17, 2024
PCB 설계 규칙 마스터링 : 최적의 결과를 위한 종합 가이드
PCB 설계 규칙은 인쇄 회로 기판의 기능성, 신뢰성, 제조 가능성을 보장하는 중요한 안내입니다. PCB 설계 규칙을 준수하면 설계자는 제조 과정과 최종 제품에서 최적의 성능을 달성하고 잠재적인 문제를 최소화할 수 있습니다. 이 종합 가이드에서는 PCB 설계 규칙에대해 깊이 있게 다루며, 귀중한 통찰력과 실용적인 팁, 그리고 현실적인 예시를 제공하여 성공적인 PCB 레이아웃을 만드는 데 도움됩니다. I. PCB 설계 규칙의 중요성 이해 신호 무결성과 전자기 적합성 (EMC) 신호 무결성을 유지하고 전자기 간섭을 방지하려면, 설계자는 배선 간격과 임피던스 제어, 접지 분리와 같은 요소들을 고려해야 합니다. 적절한 배선 간격은 혼선과 소음을 줄여 구성 요소 간의 명확한 통신을 보장합니다. 임피던스 제어는 고속 설계에서 매우 중요하며, PCB 내의 배선을 통해 신호 무결성을 유지합니다. 제조 및 조립 공정 촉진 효율적인 조립 및 테스트를 위해서는 부품 배치가 매우 중요합니다. 부품 배치 및 방향에 ......
Sept 17, 2024
플렉스 PCB 설계 팁과 요령
플렉시블 인쇄 회로 기판(Flex PCB)은 폴리이미드(polyimide)와 같은 유연한 소재로 만들어진 인쇄 회로 기판의 한 종류입니다. FPCB는 소비자 전자 제품, 의료 기기, 자동차 전자 장치 등 다양한 응용 분야에서 사용됩니다. JLCPCB의 플렉스 PCB FPCBs 설계는 여러 가지 고유한 고려사항이 있기 때문에 도전적일 수 있습니다. 이 기사에서는 몇 가지 중요한 플렉서블 PCB 설계 팁과 요령에 대해 다루겠습니다. 플렉서블 PCB의 윤곽(Outline)은 보드의 최종 모양을 의미합니다. 아웃라인을 설계할 때 다음 사항을 고려해야 합니다. 아웃라인 레이어는 고유해야 합니다. 일반적으로 이 레이어는 GM1 또는 GKO로 표현됩니다. 비금속 홀 고리(annuli)나 슬롯 프레임도 아웃라인 레이어에 배치해야 합니다. 아웃라인 레이어에는 불필요한 선이 없어야 합니다. FPC 아웃라인에는 내부 직각이나 날카로운 모서리가 없어야 합니다. 아웃라인은 반드시 닫힌 형태여야 하며, 열린 형태는 허......
Sept 17, 2024
불규칙한 모양 및 구조의 패널화 문제 해결 방안
생산 과정에서 JLCPCB는 V-커팅에 대한 고려가 부족한 패널 설계를 자주 처리했습니다. 여러 개의 보드를 단순히 타일처럼 배열하는 방식은 크기가 일정하고 형태가 규칙적인 직사각형 보드에는 적합합니다. 그러나 크기가 다양하고 불규칙한 형태의 보드의 경우 이러한 단순한 패널 설계는 현실적으로 적용하기 어렵습니다. 이 경우, 생산에 사용되는 기계의 능력과 요구 사항을 충분히 고려해야 합니다. 아래의 실제 예시를 통해 이러한 부적절한 패널 설계 단점을 구체적으로 분석해 보겠습니다. 사례 1 아래 예에서, 불규칙한 모양의 보드를 둘러싸기 위해 fill-in이 추가되었지만 왼쪽 위 모서리와 왼쪽 아래 모서리와 같은 위치에는 기계적 지지대가 없습니다. 이러한 부분을 밀링할 때 한쪽 끝에서 지탱되어야 하므로, V-커팅 기계를 통과할 때 변형이 발생합니다. 그 결과 형성 과정에서 불균형한 힘 배분으로 인해 V-커팅이 직선이 아니게 되어, 결과적으로 불량품이 발생하게 됩니다. 아래에 표시된 올바른 패널화 방......
Sept 17, 2024
PCB의 비아 설계 잠재력 극대화 : 성능 및 연결성 향상
비아 설계는 PCB의 필수 요소로, 효율적인 신호 흐름, 우수한 열 성능, 양질의 열 방출 및 층과 부품 간의 연결을 용이하게 만듭니다. 이 글에서는 PCB에서 비아 설계의 중요성을 살펴보고, 다양한 비아 유형을 이해하며, 패드 설계에서의 중요성을 논의하고, 비아 설계를 최적화하기 위한 최상의 방법을 제시하겠습니다. 비아(Via)란 무엇인가요? 비아(Via)는 인쇄 회로 기판(Printed Circuit Board, PCB) 설계에서 중요한 구성 요소로, 기판의 여러 층 사이에 전기적 연결을 형성합니다. 이는 전도성 경로로 작용하여 신호, 전력, 그리고 접지 연결이 PCB를 통해 원활하게 흐르도록 합니다. 비아는 일반적으로 구리와 같은 전도성 물질로 도금된 드릴로 뚫은 구멍으로 층들 간에 전기 신호를 전달할 수 있습니다. 비아의 직경은 특정 설계 요구 사항과 제조 능력에 따라 결정됩니다. 비아를 생성할 때, 기판의 각 층에 적절한 회로와 정확하게 정렬되고 배치되었는지 확인하는 것이 중요합니다.......
Sept 17, 2024
PCB 기본 지식 : 간단한 PI 매칭을 갖춘 50ohm PCB 트레이스
RF(무선 주파수) 설계를 진행할 때, PCB 상의 안테나와 RF 구성 요소 간의 신호 전송은 매우 세심하게 주의해야 합니다. 그 중에서도 중요한 요소는 안테나 트레이스의 설계로, 이는 RF 신호가 원활하게 전파되도록 하는 통로입니다. 이 글에서는 PCB 설계에서 안테나 트레이스가 50옴 특성 임피던스를 유지하는 것의 중요성과 RF 응용에서 최적의 성능을 달성하기 위한 최선의 방법을 다루고자 합니다. 1. 50옴 임피던스의 중요성 RF 시스템에서 전송 라인의 특성 임피던스를 일관되게 유지하는 것은 신호 반사를 줄이고 전력 전송을 극대화하는 데 필수적입니다. 50옴의 특성 임피던스는 전력 처리 능력, 신호 무결성, 임피던스 매칭의 용이성에서 최적의 균형을 제공하므로, RF 설계에서 널리 사용됩니다. 안테나 트레이스의 임피던스가 연결된 RF 구성 요소(안테나, 송수신기, 증폭기 등)의 임피던스와 일치할 때, 신호 손실과 반사가 최소화되어 효율적인 RF 신호 전송이 가능해집니다. 2. 50Ω 안테나......
Sept 17, 2024
구리 트레이스 디자인 마스터링
구리 트레이스는 PCB 설계에서 전기 신호의 효율적인 흐름을 보장하는 데 없어서는 안 될 요소입니다. 전자공학 애호가, 취미 생활자, 엔지니어, 학생 또는 전문가 모두, 구리 트레이스 설계의 원리와 기술을 이해하면 PCB 프로젝트의 질을 한층 높일 수 있습니다. 오늘 JLCPCB는 여러분이 구리 트레이스 설계의 기법을 터득할 수 있도록 도와드리며, 프로젝트가 최상의 결과를 달성하도록 지원할 것입니다. 구리 트레이스 설계의 중요성 구리 트레이스는 모든 PCB의 핵심 요소로, 구성 요소 간의 신호를 전달하고 전자 기기의 기능을 가능하게 합니다. 잘 설계된 구리 트레이스 레이아웃은 신호 손실을 최소화하고, 전자기 간섭(EMI)을 줄이며, 신호 무결성을 향상시킵니다. 구리 트레이스 설계의 기법을 마스터함으로써, PCB의 전반적인 성능과 신뢰성을 높일 수 있습니다. 구리 트레이스 설계에서 중요한 고려 사항 a. 트레이스 폭과 간격 트레이스 폭과 간격을 적절히 설정하는 것은 임피던스 제어, 신호 열화 방......
Sept 9, 2024
PCB 트레이스 폭의 중요한 역할과 계산 방법
인쇄 회로 기판 (PCB) 설계의 복잡한 과정에서 길을 찾으려면 여러 중요한 요소에 대한 깊은 이해가 필요합니다. 그 중에서도 트레이스 폭은 중심적인 역할을 합니다. PCB 설계의 이 중요한 측면은 우수한 전자 장치 성능을 실현하고 신뢰성을 보장하며, 기능을 최적화하는 핵심 요소입니다. 이 포괄적인 가이드에서는 PCB 트레이스 폭이 신호 무결성, 열 관리 및 전기적 성능에 미치는 깊은 영향을 탐구할 것입니다. 디자이너들이 정보에 입각한 결정을 내릴 수 있도록 돕기 위해 PCB 트레이스 폭 계산기와 같은 도구와 지식을 제공하는 것이 중요합니다. PCB 트레이스 폭의 복잡한 차이를 이해하고 전자 설계의 핵심에 미치는 명백한 영향을 파헤치는 이 여정에 함께하시기 바랍니다. PCB 트레이스 폭이란 PCB 트레이스 폭은 PCB 기판에서 구성 요소 간의 전기 신호를 전달하는 전도 경로의 폭을 의미합니다. 트레이스 폭은 전류 전달 능력, 임피던스 및 열 특성에 중요한 영향을 미치며, 이는 PCB의 전체 성......
Sept 9, 2024
마우스 바이트로 향상된 PCB 설계 효율성
PCB 설계는 전자 제품 제조의 중요한 부분으로, 설계를 최적화하면 제조 효율성을 크게 높이고 비용과 낭비를 줄일 수 있습니다. 효율성을 높일 수 있는 설계 요소 중 하나는 마우스 바이트를 적용하는 것입니다. 마우스 바이트(Mouse bites)란 제조 과정에서 PCB를 개별 조각으로 쉽게 분리할 수 있도록 PCB에 작은 절단 또는 홈을 만드는 것을 말합니다. 이 글에서는 PCB 설계에서 마우스 바이트의 역할, 장단점, 설계 안내 및 실제 사례 연구를 알아보겠습니다. 또한, 제조와 조립의 효율성을 위해 효율적인 PCB 설계가 왜 중요한지, 그리고 마우스 바이트가 이 효율성을 어떻게 향상시킬 수 있는지 논의할 것입니다. 마우스 바이트의 종류 마우스 바이트는 주로 두 가지 유형이 있습니다 - V-스코어(V-score)와 탭 라우팅(tab-routing). V-스코어 마우스 바이트(V-score mouse bites)는 PCB의 한쪽 면에서 미리 정해진 깊이만큼 절단하여 생성됩니다. 일반적으로 PC......
Sept 9, 2024
전기 회로도 이해 : 종합 가이드
전기 회로도는 전기 시스템을 이해하고 문제를 해결하는 데 필수적입니다. 전기기사와 공학생도 회로도를 읽는 능력을 갖추는 것은 매우 중요한 기술입니다. 전기 회로도란 무엇인가? 전기 회로도는 전기 회로를 그래픽적으로 나타낸 것으로, 표준화된 기호를 사용하여 구성 요소와 그 연결 상태를 표시합니다. 회로도는 회로의 설계와 기능을 명확히 전달하여, 작동 방식을 쉽게 이해할 수 있도록 도와줍니다. 기호는 회로도의 기본 요소로서, 엔지니어, 전기기사 및 기술자들이 문서를 참조하지 않고도 회로의 기능을 이해할 수 있도록 도와줍니다. 이러한 기호는 국제적으로 표준화되어 있어, 언어나 지역에 관계없이 도면을 해석할 수 있게 합니다. 전기 회로도에서 일반적으로 포함되는 주요 요소 1. 기호 : 저항기, 커패시터, 다이오드, 트랜지스터, 전원 등과 같은 구성 요소를 나타내기 위해 표준화된 기호가 사용됩니다. 여기에는 다양한 기호 및 그 설계 원리에 대한 자세한 기사가 첨부되어 있습니다. [JLCPCB에 게시된 ......
Aug 24, 2024
- 1
- 2
- 3